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Ahstrxt 

A cornpnter program called SMILE h as been developed to calcula.tc the cquilil~riurn 

polarization in a higbenergg electron storage ring. It can calcnla.tc spin resonances to 

arbitrary orders, in principle. Results of polarization calculat,ions arc shown for a, variety of 

storqe ring models, to elucidate various aspects of the behaviour of the pola,riza.tion, such 

‘as the effects of machine symmetry, barn energy sprea.d, and transverse mornent,~m~ recoils; 

etc. Rcasonablc agrrcmerlt is obta.ined with some experiment,al da,ta, from mcasllrcments 

a,t. SPEAR. 
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I. INTRODUCTION 

The chief goal of polarization calculations is to calculate the equilibrium polarization, 

including spin resonances of arbitrary order (at least in principle). A formula for the 

equilibrium polarization in an electron storage ring was given in 1973 by Derbenev and 

Kondratenko.’ (Some theoretical aspects were clarified in Ref. 2.) However, no practical 

algorithm was given in Ref. 1 for evaluating the polarization formula for a given storage 

ring model. Such an algorithm has been developed in Refs. 3 and 4, to calculate spin 

resonances to arbitrary orders (in principle) in the approximation of treating only linear 

orbital dynamics, and a computer program called SMILE4 has been written to implement 

it. Results of polarization calculations for a variety of models are presented below, to eluci- 

date various aspects of the behaviour of the polarization in a high-energy electron storage 

ring. Reasonable agreement is obtained with some experimental data from measurements 

at SPEAR. 

Various topics are beyond the scope of this report. In particular, SMILE is a program 

to calculate the polarization for a given storage ring model. It is not, in its present form, 

a fitting program. Thus, it does not perform closed orbit corrections or spin matching. 

These topics will not be discussed below. SMILE also assumes the beam is in equilibrium. 

It does not calculate the time evolution of the orbital and/or spin distribution, e.g. by 

tracking of a set of electrons. Such calculations are also beyond the scope of this report. 

II. GENERAL REMARKS 

The equilibrium degree of radiative polarization in a high-energy electron storage ring 

is given by the Derbenev-Kondratenko formula’ 

8 
Peq = _ 

5a 
(1) 

Here v’ is the particle velocity, y is the particle energy in units of rest mass energy, i E 

v’ x $/lc x I$, ti is the spin quantization axis and p is the local radius of curvature of 

the particle trajectory. The angular brackets denote an equilibrium ensemble average over 
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the distribution of particle orbits and the ring azimuth. The corresponding polarization 

build-up time, T~,,L, is given by 

, (2) 

where m and e are the particle mass and charge, respectively. The axis iz. depends on the 

particle orbit, C = ti(F,p78), and, by definition, satisfies the Thomas-BMT equation 

dh 
a = ti(T,,,8) x iL 

and also the periodicity conditionsl~* 

(3) 

;l(l,~,e)=jL(r11CI+2R,e)=~(r,~,e+2~), (4) 

where {I,$} denote the orbital action-angle variables, and 6 is the spin precession vector. 

Because there is a distribution of vectors ti, the full equilibrium polarization vector l?Cc, is 

given by (see Ref. 3 for details) 

i;., = (ix)@) 

The Derbenev-Kondratenko formula gives the value of (Z..iL) only: 

(5) 

PDK = (Gi) . (‘3) 

The contribution of the (ti) term will be investigated below. It turns out to be negligible. 

A computer program called SMILE has been written to calculate fi and $%/ay) 

in the approximation of linear orbital dynamics, and results are presented below. Details 

of the computer algorithm are given in Ref. 4, but some features of the program will be 

described briefly here. The program uses a recursive algorithm, and is therefore able to 

calculate the polarization up to arbitrary orders of spin resonances without requiring new 

code to be written for each new order. The formalism uses perturbation theory, and the 

perturbation expansion parameter is the orbital amplitude (strictly, there are three expan- 

sion parameters, because there are three amplitudes, but they are all treated on the same 

footing). The user can instruct the program to calculate to different orders in the various 

modes, thus one can, for example, calculate to higher-order in the synchrotron oscillations 



than in the betatron oscillations, if desired. The program can also accept storage ring 

lattices of arbitrary geometry, including magnet misalignments and spin rotators (or other 

non-planar lattices). It uses a fully symplectic B-dimensional formalism to calculate the or- 

bital motion. Overlapping spin resonances can be calculated without requiring any special 

treatment. The beam energy spread, as well as the transverse beam sizes, are taken into 

account when calculating the equilibrium polarization. In the results presented below, it is 

assumed that the orbital distribution is Gaussian in all planes. If desired, a more general 

orbital distribution can be implemented into the code. 

II. RESULTS 

A. PERFECTLY ALIGNED MACHINE 

Various results of polarization calculations using SMILE4 will now be given. Graphs 

of the the polarization as a function of ay, where a = (g - 2)/2, will be shown. In units 

of energy, ay = E(GeV)/.440652. In all the graphs that, appear below, the symbol v 

denotes the spin tune, while the orbital tunes are QZ, Q, and Q,, in standard notation. 

In this section we consider results from a perfectly aligned storage ring. In Fig. 1, the 

polarization is shown for a two-fold symmetric machine, with vertical bends in the lattice. 

The calculation is to fourth order in all orbital modes. The spin resonances v = 2 + Q., 

v = 2+ Qz, and v = 4 - Q,, with their satellites, are visible. Note that, because of the 

machine symmetry, odd harmonics of the spin resonances do not appear. In Fig. 2, the 

same graph is shown in more detail in the vicinity of the resonance Y = 2 + Q,. It can be 

seen that, the second order resonances Y = 2 + QL - Qd and v = 4 - 2Q, overlap. No special 

modification is required to calculate the polarization in this region - it is not necessary: 

in the SMILE algorithm, to assume that the resonances are widely separated. 

B. BEAM ENERGY SPREAD 

The ensemble averages in Eq. (1) require that the orbital beam emittances, e.g. the 

beam energy spread, be taken into account when calculating the polarization. To show 

that this is done in the SMILE program, the polarization was recalculated for the same 

storage ring model used above, but all the emittances were multiplied by a factor of 10 



(so the beam energy spread was increased by fi). The result is shown in Fig. 3, in the 

same spin-tune range as Fig. 2, and we see that the resonances are indeed stronger. In 

particular, the overlapping resonances v = 2 + Qz - Q. and v = 4 - 2Q, can no longer be 

resolved - they appear as one resonance. 

C. THE FACTOR (G) IN THE POLARIZATION 

It was stated above that there is a contribution to the polarization, viz., the factor 

(ti) in Eq. (5), that is not given by the Derbenev-Kondratenko formula (Eq. (1)). In Fig. 

4, the contribution of this factor to the polarization is calculated for the mrne model used 

above. First, we write 

%=&~l~+Re(&) (7) 

where fro is the value of & on the closed orbit, and & is a vector orthogonal to tie. Its 

detailed definition does not matter here. Then, to first order in the orbital motion, we can 

write 

(4 = fio(6??) + W(C$oo) 

+ (higher order) 

In Fig. 4, the value of log,,(l[l’) is shown along with the value of PDK from Fig. 2, for 

only the lowest order contribution t,o the polarization. We see that, although in principle 

the factor (ti) can lead to large depolarization not given by the Derbenev-Kondratenko 

formula, in practice 

(lC12) < lo-’ (9) 

throughout almost the whole graph, and even near the center of the resonance (ICI’) < 

10-2.5. Barbers has reported similar results for HERA, showing that this factor is unim- 

portant in storage rings of very different energy and circumference. 

D. VERTICAL FLUCTUATIONS 

The derivation of the Derbenev-Kondratenko formula contains the approximation that 

the electron recoil due to a photon emission is only longitudinal (i.e. only the effects of 
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energy loss are treated). Transverse recoil terms are neglected. In a perfectly aligned hor- 

izontal storage ring, it turns out that energy loss terms do not excite any spin resonances, 

whereas the vertical recoils do, so that there are corrections to the Derbenev-Kondratenko 

formula in a perfectly aligned horizontal storage ring. For a weak-focusing ring, it is 

reported6 that the polarization can increase to 99.2% near a spin resonance: the vertical 

recoil terms do not necessarily always decrease the polarization. The formula giving the 

combined effect of recoils along the electron momentum (longitudinal) and in the direction 

of the field (transverse) is’ 

( 1 
- 
Ii 

fi.Lp.i+--.?l 
1 afi ^ 

a7 37 wb I> 

Here r(&/&) describes the effects energy loss, due to a photon emission, and &/@b 

describes the effects of recoil in the direction of the local magnetic field. Algorithms to 

calculate these vectors are given in Refs. 4 and 7. Eq. (10) has been evaluated for various 

perfectly aligned horizontal strong-focusing storage rings, and results are given in Ref. 8. 

A sample graph from Ref. 8 is shown in Fig. 5. The calculation is again to leading order. 

The resonance is v = Qz, and the polarization increases to approximately 98% on one 

side of the resonance. However, this result is quite sensitive to the presence of closed orbit 

distortions in the ring, as is shown in the next section. 

E. CLOSED ORBIT DISTORTIONS 

In Fig. 6, the polarization is calulated to second order in all modes, for the same 

model used in Fig. 5. The r.m.s. vertical closed orbit distortion is 1.1 mm. The solid 

curve shows the result of using only Eq. (I), and the dashed curve shows the result of 

using Eq. (9). There is difference of about 2% in magnitude between the curves, near the 

resonance v = Qz, and the difference decreases away from t,his resonance. 

The relative importance of transverse recoils decreases with increasing energy (see 

Ref. 7). This is illustrated in Fig. 7, where the polarization is calculated with (dashed 

curve) and wit,hout (solid curve) vertical momentum recoils for a horizontal storage ring 
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with a 1 mm r.m.s. vertical closed orbit distortion. The two curves are indistinguishable 

on the scale of this graph. 

The polarization was also calculated for the model used in Figs. 1 and 2, with an 

r.m.s. vertical closed orbit distortion of 1 mm, and the result is shown in Fig. 8. The 

calculation was again to fourth order in all modes. This time we see resonances such as 

v = 3 + Qz and v = 3 rt Q., which were forbidden by symmetry in the perfectly aligned 

lattice. 

The SMILE program was also applied to two verions of the PEP storage ring, and the 

results are shown in Figs. 9 and 10. In both Figures, the dot-dash curve is the seroth order 

calculation, the dotted curve is the second order result, and the solid curve is the fourth 

order result. (Because the orbital distribution is assumed to be a Gaussian symmetric 

about the closed orbit, t,he contributions of other orders vanish in the ensemble average. 

The same feature is displayed by all the other graphs in this report.) Fig. 9 was obtained 

using a mini-beta PEP lattice, and Fig. 10 was obtained by using an SSRL lattice. In 

both cases the r.m.s. vertical closed orbit distortion was 0.7 mm. No orbit correction or 

spin matching techniques were used. The first-order spin integrals are identified in the 

Figures. We see that the ring lattice (for a given set of magnets and ring geometry) has a 

profound influence on the polarization. In the SSRL lattice, the resonances are not only 

weaker, but there are also fewer resonances, than in the mini-beta lattice. Unfortunately, 

for high-energy physics experiments, a mini-beta lattice is required. 

A graph of polarization vs. energy was obtained in experiments performed at SPEAR.g 

The graph is reproduced in Fig. 11. The curve is a guide to the eye, not a theoretical 

fit. The orbital tunes are labelled I+, vV and vb, instead of Q., Qz and Q., respectively. 

Recently, a result has been reportedis of a calculation of the ratio of the width of the 

second order resonance v = 3 + Q. - Q. to that of the first order resonance v = 3 + Qz 

at 3.65 GeV in Fig. 11, which agrees with the experimental result. This new calculation 

has caused some doubt to be expressedrO about the validity of previous calculations of 

higher-order resonances,” which are claimed not to agree with the experimental result. 

A storage ring model with the approximate prop&es of SPEAR was used to see 

if the SMILE algorithm could also explain the ratio of the widths of these resonances. 
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The parameters of the model were adjusted to fit the width of the first-order resonance 

v = 3 + Qz, and the widths of the two satellites v = 3 + Q, - Q. and v = 3 + Q. - 2Q. 

were calculated without further adjustment of the model. The result is shown in Fig. 12. 

The solid curve is the SMILE result, and the dashed curve is the experimental curve from 

Fig. 11. We see that, there is reasonable agreement between experiment and theory. Thus 

it appears that there is not necessarily any contradiction between the new calculation” 

and the SMILE formalism. 

One should note also that the data shown Fig. 11 were not obtained in one experi- 

mental run, but over several runs, and the machine properties (such as the tunes) varied 

between runs.” Adjustments to compensate for these effects were made in Ref. 8, but 

one must therefore be careful in attempting a detailed comparison between theory and 

experiment (Fig. 11). For this reason, one should not necessarily conclude that Fig. 11 

contradicts calculations such as Ref. 11. In particular, the SMILE formalism contains the 

spin integrals in Ref. 11 as a subset. It is therefore possible that any discrepancy between 

the theory in Ref. 11 and the data in Fig. 11 are due to the additional integrals contained 

in the SMILE formalism but not in Ref. 11. 

III. CONCLUSIONS 

The SMILE program has been used to calculate the polarization for a number of 

storage ring models, to elucidate various aspects of the behaviour of the polarization. 

For example, the vanishing of certain resonances due to machine symmetry, the effect, of 

beam energy spread, the relative importance of transverse recoils, and the reduction in 

the polarization due to the (ti) factor (the spread in the distribution of spin quantization 

axes jL(T;P;B) due to the spread in coordinates and momenta). Note that the program 

was able to calculate all combinations of orbital modes, including overlapping resonances, 

for machines of arbitrary geometry, including non-planar rings (Figs. 1, 2 and 8), and 

including closed orbit distortions. In addition, sample results were shown for a high- 

energy ring (PEP), and reasonable agreement was obtained for the ratios of the widths of 

certain spin resonances in the SPEAR data of Ref. 8 (Fig. 12). 
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